Straight line arrangements in the real projective plane

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Straight Line Arrangements in the Real Projective Plane

Let A be an arrangement of n pseudolines in the real projective plane and let p 3 (A) be the number of triangles of A. Grünbaum has proposed the following question. Are there infinitely many simple arrangements of straight lines with p 3 (A) = 1 3 n(n − 1)? In this paper we answer this question affirmatively.

متن کامل

Triangulating the Real Projective Plane

We consider the problem of computing a triangulation of the real projective plane P , given a finite point set P = {p1, p2, . . . , pn} as input. We prove that a triangulation of P always exists if at least six points in P are in general position, i.e., no three of them are collinear. We also design an algorithm for triangulating P if this necessary condition holds. As far as we know, this is t...

متن کامل

Coloring 3D Line Fields Using Boy's Real Projective Plane Immersion

We introduce a new method for coloring 3D line fields and show results from its application in visualizing orientation in DTI brain data sets. The method uses Boy's surface, an immersion of RP2 in 3D. This coloring method is smooth and one-to-one except on a set of measure zero, the double curve of Boy's surface.

متن کامل

Connectivity augmentation in plane straight line graphs

It is shown that every connected planar straight line graph with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar straight line graph with at most b(2n − 2)/3c new edges. It is also shown that every planar straight line tree with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar topological graph by adding at most bn/2c edge...

متن کامل

A Constructive Real Projective Plane

The classical theory of plane projective geometry is examined constructively, using both synthetic and analytic methods. The topics include Desargues's Theorem, harmonic conjugates, projectivities, involutions, conics, Pascal's Theorem, poles and polars. The axioms used for the synthetic treatment are constructive versions of the traditional axioms. The analytic construction is used to verify t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1998

ISSN: 0179-5376,1432-0444

DOI: 10.1007/pl00009373